Detecting Differences in APSD: Efficient Data Analysis (EDA) vs. Stage Groupings

David Christopher
Monisha Dey

on behalf of the
IPAC-RS Cascade Impactor Working Group

IPAC-RS © 2011
Overview

1. FDA currently uses a grouped-stage approach for detecting changes in APSD

2. IPAC-RS Cascade Impactor Working Group proposed an alternative (EDA) approach

 EDA is based on two metrics:
 - **Ratio** (LPM / SPM)
 - **Sum** (LPM + SPM) = **ISM**
 of Large Particle Mass (LPM) and Small Particle Mass (SPM) of Impactor Sized Mass (ISM)

 • Presented here is a comparison of the decision making capability of the two approaches using simulations and operating characteristic curves
Purpose

• To compare the decision making capability of EDA versus grouped stages in general and/or for a specific product

• Some aspects of this assessment could be useful in justifying an EDA approach in a filing
EDA Concept
(Generalized Example based on ACI @ 28.3 L/min)

Ratio
LPM / SPM

Sum (ISM)
LPM + SPM

Typical grouped stages shown for comparison
Differences Between EDA and Typical Grouped Stage Approaches

Based on Full-Resolution Impactor Data

Grouped Stages
- 3 (sized) stage groupings
- 3 metrics
 (each grouping assessed separately, but combined into a single outcome)
- Each metric can be affected by both shift and mass amount in APSD
- Results in confounding and introduces “noise”

EDA
- 2 (sized) stage groupings
- 2 metrics
 (for each metric, both groupings assessed simultaneously)
- Ratio metric affected by only shift in APSD
- ISM metric affected by only mass amount in APSD
ISM and LPM/SPM in Relation to APSD

- Combination of ISM and LPM/SPM enables all realistic changes of APSD shift to be detected
Comparison of Decision Capability

• Compared ability of two approaches to make correct decisions about changes in APSD
• Not for the purpose of assessing product quality
• Based on a body of real, blinded data (IPAC-RS database)
• Presentation illustrates one of eight products assessed (all were consistent)
• Values for acceptance limits determined to allow “apples-to-apples” comparison of the two approaches
• Assessment based on mass from sized components
 – Three groupings for grouped-stage approach
 – Two groupings for EDA (LPM and SPM)
 – Both approaches use same data
Comparison of Decision Capability (2)

• Total mass on sized components of impactor (ISM) has no impact on relative decision making capability of two approaches
 – ISM is exactly equal to sum of grouped stages
 – Respective sums of upper and lower limits for grouped stages translate directly into upper and lower limits for ISM
 – A decision made based on ISM acceptance limits will be the same as the (combined) decision based on acceptance limits for each of the grouped stages

• Therefore, a comparison of decision making capability can be based on how effectively each method can detect shifts in APSD (i.e., on Ratio and grouped-stage outcomes)
Shifts in APSD and Changes in MMAD

- Shifts in APSD can be directly measured by changes in MMAD
- The same set of calculated MMADs was used in the assessment of each approach
- A range of MMADs was established for which stage groupings were discriminating
- This range was then used to compare the performance of the two approaches
Basis for Capability Comparison

Stage
Grouping
Acceptance
Limits

Regression Analysis

MMAD Range

Regression Analysis

Ratio
Acceptance
Limits

David Christopher - RDD 2011, Berlin, Germany IPAC-RS
Stage Grouping Acceptance Limits for Decision Capability Assessment

- Group 1 is mass of non-sized components
- Size ranges for Groups 2, 3, 4 based on “reasonable” stage groupings*
- Acceptance limits based on 1st and 99th percentiles of distribution of these stage grouping values
- Acceptance limits for each group generally consistent with typical “rule of thumb” limits likely acceptable by FDA

<table>
<thead>
<tr>
<th>Grouped Stages (Sized)</th>
<th>Mass Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Group 2 (10.0 - 4.7 µm)</td>
<td>16.31</td>
</tr>
<tr>
<td>Group 3 (4.7 - 2.1 µm)</td>
<td>49.06</td>
</tr>
<tr>
<td>Group 4 (<2.1 µm)</td>
<td>8.03</td>
</tr>
</tbody>
</table>

Stage Grouping Relationship with MMAD

- The relationship of stage groupings to MMAD was established using a suitable regression model with 99.9% prediction intervals.
- Intersection of the prediction interval with acceptance limits determined the relevant range of MMADs over which stage groupings were discriminating (shown in following plots).
Stage Grouping Relationship with MMAD

Group 2

$R^2 = 0.58$

Acceptance Limits for Group 2
Stage Grouping Relationship with MMAD

Group 3

\[R^2 = 0.009 \]

Acceptance Limits for Group 3
Stage Grouping Relationship with MMAD

Group 4

$R^2 = 0.59$

Acceptance Limits for Group 4
Stage Grouping Relationship with MMAD

• Because of low correlation of Group 3, only Groups 2 and 4 used to establish relationship with MMAD

• Group 2 and 4 results averaged to establish common range of 3.01–4.01 µm for MMAD which was then used in determining acceptance limits for Ratio

• Allows “apples-to-apples” comparison of decision capability of the two approaches
EDA

- LPM / SPM Ratio calculated for each set of CI results using appropriate boundary (based on median MMAD)
- Fitted suitable regression model with 99.9% prediction intervals (same method as for groupings) to establish relationship between Ratio and MMAD
- Determined acceptance limits for Ratio by intersection of prediction interval with previously established MMAD limits used for stage groupings
- Allows direct link from stage grouping acceptance limits to corresponding acceptance limits for Ratio
- Comparable acceptance limits associated with common range of MMAD limits allows “apples-to-apples” comparison of decision making capability
EDA Ratio vs. MMAD

Acceptance Limits for Ratio

99.9% Prediction Interval

MMAD Limits for Groupings
Basis for Comparable Comparison

Stage

Grouping

Acceptance Limits

Regression Analysis

MMAD Range

Regression Analysis

Ratio Acceptance Limits
Levels of Quality – Grouped Stages
Measurement System Analysis (MSA)

Group 2 Mass Deposition

MMAD
Range

David Christopher - RDD 2011, Berlin, Germany
Levels of Quality – Grouped Stages

Measurement System Analysis (MSA)

Levels of Discrimination (per micron) 1.4

Uncertainty in predicting MMAD

MMAD Range

Group 2 Mass Deposition

MMAD

Levels of Quality – Grouped Stages
Measurement System Analysis (MSA)
Levels of Quality – EDA
Measurement System Analysis (MSA)

Levels of Discrimination (per micron) 8.3

Uncertainty in predicting MMAD

MMAD Range
Using Operating Characteristic (OC) Curves to Compare Decision Making Capabilities

- OC curves can be used to compare the ability of these two approaches to make correct decision
- An OC curve is a plot of the probability of acceptance (or rejection) versus a true batch property (e.g. mean) using simulated data
- Simulated data created using SAS to model real data
 - Mean and variability of mass deposition on each stage
 - Also modeled inter-relationships among stages
 - Modeling does not require normal distribution of mass deposition on stages
OC Curve Basic Principles

- Unacceptable
- Acceptable Range
- Unacceptable

Probability of Acceptance vs. True Batch Property

David Christopher - RDD 2011, Berlin, Germany IPAC-RS
OC Curve Basic Principles

- Unacceptable
- Acceptable Range
- Unacceptable

Probability of Acceptance

True Batch Property

Ideal OC Curve
OC Curve Basic Principles

Unacceptable | Acceptable Range | Unacceptable

Probability of Acceptance

True Batch Property

Ideal OC Curve
OC Curve Basic Principles

Probability of Acceptance vs. True Batch Property

Unacceptable
Acceptable Range
Unacceptable

Ideal OC Curve
Error Rates – EDA vs. Grouped Stages

<table>
<thead>
<tr>
<th>Test</th>
<th>% Correct Decisions</th>
<th>% Incorrect Rejection (Type I Error)</th>
<th>% Incorrect Acceptance (Type II Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDA Ratio</td>
<td>99.72</td>
<td>0.27</td>
<td>0.00*</td>
</tr>
<tr>
<td>Grouped Stages</td>
<td>87.76</td>
<td>12.24</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* 1 / 30,000
OC Curve and Error Rates - Ratio

![OC Curve and Error Rates Graph](image)

- OC Curve for Ratio
- Acceptance Limits
- MMAD Range
OC Curve and Error Rates - Ratio

![Graph showing OC curve and error rates - ratio](image)

- **Ratio**
- **MMAD**
- Acceptance Limits
- CORRECT DECISION
- MMAD Range

David Christopher - RDD 2011, Berlin, Germany
OC Curve and Error Rates - Ratio

![OC Curve and Error Rates - Ratio](image)

- ** Ratio **
 - Acceptance Limits
 - MMAD Range

- ** Probability of Acceptance **
OC Curve and Error Rates - Ratio

- INCORRECT REJECTION (Type I Error)
- MMAD Range
- Acceptance Limits

Ratio

Probability of Acceptance

MMAD

2.5 3.0 3.5 4.0 4.5
OC Curve and Error Rates - Ratio

![Image of OC Curve and Error Rates - Ratio](image)

- **INCORRECT ACCEPTANCE (Type II Error)**
- **MMAD Range**

Ratio vs. **Probability of Acceptance**

David Christopher - RDD 2011, Berlin, Germany

IPAC-RS
OC Curve and Error Rates - Ratio

Correct Decisions 99.72%

Type I Errors (82/30,000) 0.27%

Type II Error (1/30,000) 0.00%

0 = Correct
1 = Type I Error
2 = Type II Error

Probability of Acceptance

Ratio

Acceptance Limits

MMAD Range

2.5
3.0
3.5
4.0
4.5

0 100
OC Curves and Error Rates – Group 2

Correct Decisions

Incorrect Rejections

Because all three groups contribute to an outcome, the outcomes, OC curves and rates are the same for all three groups.

0 = Correct
1 = Type I Error
Because all three groups contribute to an outcome, the outcomes, OC curves and rates are the same for all three groups.
OC Curves and Error Rates – Group 4

Because all three groups contribute to an outcome, the outcomes, OC curves and rates are the same for all three groups.

Correct Decisions

Incorrect Rejections

Acceptance Limits

Correct Decisions 87.76%

Type I Errors (3671 / 30,000) 12.24%

0 = Correct

1 = Type I Error
Error Rates – EDA vs. Grouped Stages

<table>
<thead>
<tr>
<th>Grouping Distribution Percentiles</th>
<th>Prediction Interval (%)</th>
<th>Error Rates (%)</th>
<th>Error Rates (%)</th>
<th>Error Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ratio</td>
<td>Grouped Stages</td>
<td>Grouped Stages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type I</td>
<td>Type II</td>
<td>Type I</td>
</tr>
<tr>
<td>10, 90</td>
<td>95</td>
<td>3.04</td>
<td>0.24</td>
<td>55.32</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>2.19</td>
<td>0.07</td>
<td>59.74</td>
</tr>
<tr>
<td></td>
<td>99.9</td>
<td>1.6</td>
<td>0.01</td>
<td>62.21</td>
</tr>
<tr>
<td>5, 95</td>
<td>95</td>
<td>1.78</td>
<td>0.21</td>
<td>36.98</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>1.51</td>
<td>0.05</td>
<td>39.61</td>
</tr>
<tr>
<td></td>
<td>99.9</td>
<td>0.97</td>
<td>0.01</td>
<td>40.84</td>
</tr>
<tr>
<td>1, 99</td>
<td>90</td>
<td>0.8</td>
<td>0.18</td>
<td>10.37</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>0.78</td>
<td>0.08</td>
<td>11.04</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>0.39</td>
<td>0.02</td>
<td>11.94</td>
</tr>
<tr>
<td>99.9*</td>
<td>0.27</td>
<td>0.00</td>
<td>12.24</td>
<td>0</td>
</tr>
</tbody>
</table>

* Parameters selected in this Summary.
Error Rates – EDA vs. Grouped Stages

<table>
<thead>
<tr>
<th>Grouping Distribution Percentiles</th>
<th>Prediction Interval (%)</th>
<th>Error Rates (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type I</td>
<td>Type II</td>
<td>Type I</td>
<td>Type II</td>
<td>Type I</td>
<td>Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10, 90</td>
<td>95</td>
<td>3.04</td>
<td>0.24</td>
<td>55.32</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>2.19</td>
<td>0.07</td>
<td>59.74</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.9</td>
<td>1.6</td>
<td>0.01</td>
<td>62.21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5, 95</td>
<td>95</td>
<td>1.78</td>
<td>0.21</td>
<td>36.98</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>1.51</td>
<td>0.05</td>
<td>39.61</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.9</td>
<td>0.97</td>
<td>0.01</td>
<td>40.84</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 99</td>
<td>90</td>
<td>0.8</td>
<td>0.18</td>
<td>10.37</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>0.78</td>
<td>0.08</td>
<td>11.04</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>0.39</td>
<td>0.02</td>
<td>11.94</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.9*</td>
<td>0.27</td>
<td>0.00</td>
<td>12.24</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Parameters selected in this Summary.
Error Rates – EDA vs. Grouped Stages

| Grouping Distribution Percentiles | Prediction Interval (%) | Error Rates (%) | | | | Ratio | Grouped Stages | | | | Type I | Type II | Type I | Type II |
|----------------------------------|--------------------------|-----------------|---|---|---|---|---|---|
| | | | | | | | | |
| 10, 90 | 95 | 3.04 | 0.24 | 55.32 | 0 |
| | 99 | 2.19 | 0.07 | 59.74 | 0 |
| | 99.9 | 1.6 | 0.01 | 62.21 | 0 |
| 5, 95 | 95 | 1.78 | 0.21 | 36.98 | 0 |
| | 99 | 1.51 | 0.05 | 39.61 | 0 |
| | 99.9 | 0.97 | 0.01 | 40.84 | 0 |
| 1, 99 | 90 | 0.8 | 0.18 | 10.37 | 0.17 |
| | 95 | 0.78 | 0.08 | 11.04 | 0.07 |
| | 99 | 0.39 | 0.02 | 11.94 | 0 |
| | 99.9* | 0.27 | 0.00 | 12.24 | 0 |

* Parameters selected in this Summary.
Conclusions

• EDA approach is based on the relationship between Ratio and MMAD, plus uncertainty
• Ratio metric is more predictive of particle size changes in APSD than grouped stages
• EDA allows acceptance limits that minimize both incorrect rejection (Type I) errors and incorrect acceptance (Type II) errors
• Minimizing incorrect acceptance (Type II) errors for grouped stages comes only with increase of incorrect rejection (Type I) errors
• This work provides evidence that the EDA approach is more effective than grouped stages for decisions about changes in APSD that influence particle size
ACKNOWLEDGMENTS

CI WG Members

1. Steve Stein 3M
2. Mårten Svensson AstraZeneca
3. Volker Glaab BI
4. Rajni Patel Boehringer Ingelheim
5. Terry Tougas BI (CHAIR)
6. Tanya Church Chiesi
7. David Lewis Chiesi
8. Emilio Lutero Chiesi
9. Massimiliano Dagli Alberi Chiesi
10. Lana Lyapustina DBR
11. Geoff Daniels GlaxoSmithKline
12. Sue Holmes GlaxoSmithKline
13. Helen Strickland GlaxoSmithKline
14. Richard Bauer MannKind Corporation
15. Dave Christopher Merck
16. Monisha Dey Merck
17. Adrian Goodey Merck
18. Jorge Quiroz Merck
19. Nagaraja Rao Novartis
20. Dave Russell-Graham Pfizer
21. Hans Keegstra Teva
22. Zecai Wu Teva
23. Jolyon Mitchell Trudell Medical International
24. Bruce Wyka, SpiraPharma Consulting
25. Adam Watkins, Vectura

Updated - as of April 21, 2011
Thank You

Questions?