Predicting bronchodilator response of a short acting beta-2-agonist from aerodynamic particle size data using artificial neural networks

Marcel de Matas¹, Qun Shao¹, M. Biddiscombe², Henry Chrystyn³, P.J. Barnes² and Omar S. Usmani²

¹Institute of Pharmaceutical Innovation, University of Bradford, Bradford, BD7 1DP
²National Heart & Lung Institute, Imperial College London & Royal Brompton Hospital, London, UK,
³School of Pharmacy, University of Huddersfield, Huddersfield, UK

INTRODUCTION
Provision of robust supply chain with surety

Benefits of this approach include:
- Assurance of consistent clinical quality
- Remove/Reduce/Refine – in vivo studies
- Bridging
- Bioequivalence
- Improved regulatory procedures
- Expedited post-approval changes
- Maximised quality and efficiency
- Define design space (Figure 1)
- Facilitate continuous improvement

Aims & Objectives
Artificial neural networks (ANNs) are computational systems able to mimic the mechanisms of human learning (Figure 2). These have been used to generate in vitro in vivo correlation (IVIVC) models for orally inhaled dosage forms, which predict measures of clinical quality from knowledge of aerodynamic drug particle size characteristics and subject demographics (1, 2). In order to predict clinical responses in individual subjects, knowledge of major causes of inter- and intra-subject variability is required.

The aim of this study was to further demonstrate the utility of ANNs for generating IVIVC models from clinical data for different drug formulations discriminated by aerodynamic particle size.

RESULTS & DISCUSSION
ANNs were able to generate complex models which predicted the BDR of individual patients at different time points following the administration of the cumulative dosage regimen (Tables 1 and 2).

A number of factors were shown to influence the model and contribute to the variability in BDR.

- Aerodynamic PS – Largest MMAD (% of dose emitted in range 3.3 µm – 10 µm) gave greatest BDR (Figure 3)
- Bronchodilator reversibility to standard MDI – Greatest BDR for those responding better to MDI
- Body Size – Greatest response in largest patients
- Baseline FVC – Lowest response in patients with highest pre-treatment FVC
- Age – Older individuals showed slightly lower improvements in lung function compared to pre-treatment baseline
- Pre-treatment FEV₁ – Greater BDR for those with greatest disease severity

Table 1. Indices of predictability from ANN models for individual doses from the cumulative dosing regimen. Parameters calculated from comparisons of observed BDR versus predicted BDR for data not used in generating models (unseen data).

<table>
<thead>
<tr>
<th>Dose</th>
<th>Validation set</th>
<th>Strange set</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose 1</td>
<td>N.A</td>
<td>N.A</td>
<td>No notable difference in bronchodilator responses between individual patient size variates</td>
</tr>
<tr>
<td>Dose 2</td>
<td>m = 1.00 c < -0.09</td>
<td>m = 1.00 c < -0.09</td>
<td>For BDR measured at 30 minutes after receiving the dose</td>
</tr>
<tr>
<td>Dose 3</td>
<td>m = 1.20 c < -0.09</td>
<td>m = 1.20 c < -0.09</td>
<td>For BDR measured at 10 minutes after receiving the dose</td>
</tr>
<tr>
<td>Dose 4</td>
<td>m = 1.20 c < -0.09</td>
<td>m = 1.20 c < -0.09</td>
<td>For BDR measured at 10 minutes after receiving the dose</td>
</tr>
</tbody>
</table>

Figure 2. Comparison of biological neuron and computer neuron

EXPERIMENTAL & MODELLING METHODS
ANNs were used to model clinical data from a study to assess the effects of β₂-agonist (albuterol sulfate) particle size on bronchodilator response (BDR) in mild to moderate asthmatics (3). Monodisperse aerosols of MMAD 1.5 µm, 3 µm and 6 µm generated using a spinning top aerosol generator (STAG) were administered to 18 mild-moderate asthmatics as a cumulative dosing regime in a randomised placebo controlled study.

- Input data (independent variables) - Aerodynamic Particle Size (PS) characteristics - Andersen Cascade Impactor (ACI) and Time of flight (ToF) analysis
- Patient Characteristics – Age, Body Size, Disease Severity (FEV₁), Bronchodilator reversibility to a standard MDI, Forced Vital Capacity (FVC)

- Output data (dependent variables) - Bronchodilator response (BDR) – Increase in FEV₁ from pre-treatment baseline measured following each dose

REFERENCES

CONCLUSIONS
- ANN models are able to predict BDR in individual subjects for monodisperse aerosols
- Models show that larger particles provide greatest clinical effect – MMAD alone is not able to discriminate predictably. Knowledge of particle size distribution is required.
- Patient characteristics influence the magnitude of clinical effect and contribute to overall variability and must be included in IVIVC models.
- ACI is able to discriminate between formulation variants giving different clinical performance – potential use as a discriminatory tool.

Figure 3. Effect of particle size on the BDR in a selection of individuals (n=6) demonstrating greatest sensitivity to particle size differences – The ANN model is able to predict both BDR and variation in BDR amongst the selected patients from knowledge of Aerodynamic PS.