Case Study 1: Pharmaceutical Development of EXUBERA®

Nancy Harper, PhD
Research Fellow,
Parenteral Development Center of Emphasis
Pfizer Global R&D

EXUBERA®

- Insulin human (rDNA origin) Inhalation Powder
- Re-usable Exubera® Inhaler
- 1 mg, 3 mg unit dose blisters
- Indications: Type 1 and Type 2 Diabetes Mellitus
EXUBERA®

Clear chamber: designed to hold aerosolized insulin before inhalation

Base: device provides energy required for dispersion of EXUBERA powder via air pump mechanism in the device base (no batteries required)

Insulin release unit: disperses powder from blister into chamber

Blisters: available in 1-mg (green) and 3-mg (blue) doses

Pharmaceutical Challenges in EXUBERA® Development

... relative to conventional inhalation products

... specific to insulin

Uniqueness presented challenges as well as opportunities!
Challenges Relative to Conventional Inhalation Products

- Systemic Delivery
- Importance of Particle Size
- Standard PK/PD studies are possible
 - BE, Variability, Dose Response, IV / IVc, Interaction Studies, Special Populations, Other Biopharm
- Defining the Relevant Performance Attributes
- Labeling / Label Claim
 - Contained Dose vs Emitted Dose vs Respirable Dose

<table>
<thead>
<tr>
<th>Fill Mass (mg powder)</th>
<th>Nominal Dose (mg insulin)</th>
<th>Emitted Dose (mg insulin)</th>
<th>Fine Particle Dose (mg insulin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>1.0</td>
<td>0.53</td>
<td>0.4</td>
</tr>
<tr>
<td>5.1</td>
<td>3.0</td>
<td>2.03</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Source: EXUBERA® US Package Insert

Challenges Specific to Insulin

- A new, non-invasive route of insulin administration
- Insulin dosing based on mg (not units)
 - Robust Education and Customer Care programs
- Performance benchmark against SC injection
 - Defining the unit doses
 - Performance comparisons in vivo and in vitro
- Biologic
- Stability
 - Opportunity for improvements over current insulin products
 - Refrigeration not required!
Insulin Stabilization Challenge

Insulin Formulation

- Dry powder
- High drug load: 60% insulin in a buffered sugar-based matrix.
- Stabilization approach: Maintain insulin in glassy state
 - Excipients selected to provide a glass transition temperature well above pharmaceutically relevant storage temperatures.
 - Exhibits a single T_g (indicative of a single amorphous phase).
 - The high T_g is maintained over the shelf life of the product and across a range of moisture content.
- Moisture content and its affect on glass transition temperature (T_g) was a critical parameter impacting chemical stability.
- Moisture Control challenges throughout the manufacturing process and for packaging design
Glass Transition Temperature

- T_g decreases with increasing water content
- Spray dried powder water content is ~2% (w/w), consistent with a $T_g \approx 80^\circ C$.

Physical Form Stability

- No evidence of crystallization in insulin powder for inhalation upon moisture or thermal challenge

XRPD patterns after up to 88% RH for (A) 22.5, (B) 26, and (C) 28 hours
XRPD patterns before (A) and after (B) exposure to 150°C for 15 minutes
Spray Drying

Solution ⇝ Atomization ⇝ Drying ⇝ Powder Collection

Spray Drying enables production of homogenous particles of controlled size with:
- Low moisture
- High drug purity
- Small particle size (<5 μm)
- Non-critical excipient physical form

Typical Pharm
10 to 20μm

Micro-encapsulation
30 to 40μm

Food
50 to 100μm

Exubera®
<5 μm
Maintenance of Insulin Molecular Structure

- The spray-drying process does not affect the secondary structure of insulin, assuring pharmacological activity
- Techniques included Circular Dichroism, FTIR
- Quaternary/Oligomeric Structure: Insulin Monomer (HP-SEC, SDS-PAGE, DLS)

CD spectra for insulin in the formulation matrix before (blue), and after (green) spray drying, compared with ingoing insulin API (red).

Particle Morphology (SEM)

- Uniform, rugose morphology
- No effect on particle morphology before (left) and after (right) exposure to high humidity (75% RH, 25°C for 36 hours)
Process Scale-Up / Optimization

- DOE on process parameters to map knowledge space
- Design space / control space based on aerosol performance
- Each contour line represents a constant predicted value for FPD

Powder Filling

- Beyond capability of existing technology
- Design Challenges
 - Low density powders
 - Micro fill weights (1.7 mg and 5.1 mg)
 - High speed (>1500 fills/min)
 - Accuracy (~2% RSD)
 - Consistency
Fill Weight Control

![Graph showing fill weight control with sample number on the x-axis and fill mass (% of target weight) on the y-axis. Legend includes individual samples, mean limits, mean of individuals, and individual limits with RSD (%).]

Packaging Design

- Compact Package
 - Patient handling
 - Device interface
- Foil Forming, Filling, Sealing
 - Blister cavity design
 - Tooling and manufacturing scale up
 - Operation in ultra-low humidity environment
- Drug Product Protection
 - High moisture barrier

IPAC-RS Conference November 2006
Particle size: The optimal window for deposition

![Graph showing fractional deposition vs. particle size](image)

- Alveolar region
- Airways
- Mouth and throat

Powder / Aerosol Particle Size Distribution

![Graph showing cumulative percent less than vs. particle size](image)

- High dispersibility
- Aerosol particle size broadly in line with spray dried powder.

Inhaler Challenges

- Reproducible powder extraction, deagglomeration and dispersion.
- Patient generated compressed air provides energy source
- Capable of aerosolizing relatively cohesive powders
- Suitable for delivering small powder masses (1-10 mg)
- Separate breathing maneuver from aerosol generation
- Chamber allows for patient feedback and dose delivery
- Designed for long-term repeated use

Inhaler Design
Inhaler Design

Device Challenges

- Balancing drug product requirements against device requirements
 - Heavy reliance on risk based approach in Pharm Dev

- Device world embraces continuous improvement
 - Educating device design and manufacturing on type/timing of acceptable changes based on development stage, given regulated as drug product
 - Use of comparability protocol for known changes
 - Building in flexibility as appropriate into submission
Drug + Inhaler System Challenges

- Elaborate performance characterization programs
 - Risk based approach: comprehensive FMEA’s
 - Inhaler Design Verification Testing
 - Testing to failure
 - Clinical experience
 - Use-Life simulations
 - FDA Draft MDI/DPI Guidance (…and beyond)
- Output contributed to:
 - Comprehensive product understanding
 - Assessment of impact on safety/efficacy
 - Instructions in labeling/medication guide; Customer Care

Performance Characterization

- Robust performance (aerosol dose delivery and mechanical integrity) demonstrated over a range of patient usage scenarios
- Environmental (temperature, humidity, altitude)
- Usage reproducibility
 - Independence from inhalation flow rate (10-60 lpm) and volume (400-1400 ml)
 - No priming effect
 - Independence of usage angle
 - Rugged performance with long term use
Inhaler Flow Rate: Little Impact on Aerosol Performance

Characterization Studies (FDA MDI / DPI Draft Guidance)

<table>
<thead>
<tr>
<th>Section IVB Recommendation</th>
<th>Studies Conducted/ Relevant Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Appropriate Storage</td>
<td>Stability Studies</td>
</tr>
<tr>
<td>Condition</td>
<td>DVT studies</td>
</tr>
<tr>
<td>Stability of Primary (Unprotected) Package</td>
<td>Stability Studies</td>
</tr>
<tr>
<td>Effect of Varying Flow Rates</td>
<td>Square Wave flow rate study</td>
</tr>
<tr>
<td></td>
<td>Pediatric inhalation profile study</td>
</tr>
<tr>
<td>Effect of Storage on Particle Size</td>
<td>Stability Studies</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Dose Build-Up and Flow Resistance</td>
<td>Use-life studies</td>
</tr>
<tr>
<td></td>
<td>Cleaning frequency</td>
</tr>
<tr>
<td></td>
<td>Mass Distribution</td>
</tr>
<tr>
<td>Effect of Orientation</td>
<td>Dosing orientation</td>
</tr>
<tr>
<td></td>
<td>Drop and vibration testing</td>
</tr>
<tr>
<td>In-Vitro Dose Proportionality</td>
<td>Biopharmaceutics studies</td>
</tr>
<tr>
<td>Effect of Patient Use</td>
<td>Planned Returns</td>
</tr>
<tr>
<td></td>
<td>Product Investigation Process</td>
</tr>
<tr>
<td>Effect of Moisture</td>
<td>Excursion studies</td>
</tr>
<tr>
<td></td>
<td>Use life studies</td>
</tr>
<tr>
<td>Photostability</td>
<td>Stability study</td>
</tr>
<tr>
<td>Profiling of Doses Near Device Exhaustion</td>
<td>Not applicable since this product is not a DPI</td>
</tr>
<tr>
<td>Fill Weight</td>
<td>reservoir product</td>
</tr>
<tr>
<td>Priming</td>
<td>Priming</td>
</tr>
<tr>
<td>Device Ruggedness</td>
<td>Planned Returns</td>
</tr>
<tr>
<td></td>
<td>Design Verification Testing</td>
</tr>
<tr>
<td></td>
<td>Accelerated Patient Use Simulation</td>
</tr>
<tr>
<td></td>
<td>Product Investigation Process</td>
</tr>
<tr>
<td>Cleaning Instructions</td>
<td>Cleaning Frequency</td>
</tr>
<tr>
<td></td>
<td>Cleaning Effectiveness</td>
</tr>
<tr>
<td></td>
<td>Cleaning Detergents</td>
</tr>
<tr>
<td></td>
<td>Microbial Inoculation Study</td>
</tr>
</tbody>
</table>
Drug + Inhaler System Challenges

- Extended-use inhaler: high bar for durability
 - Unique patient-use simulations
 - Extensive patient-use evaluation

- Findings from clinical experience enabled:
 - Early input for robustness improvements
 - Optimization and “validation” in vitro tests

Inhaler Robustness to Long-Term Use

- Clinical Retrievals (427 Inhalers)
- Accelerated Patient Use Simulation (13 inhalers)
Additional CMC Challenges

• Release Approach
 – Blisters; Inhalers
 – What are the reference standards?
 – (FDA helped to define)

• Controls and Acceptance Criteria
 – Deep Product and Process understanding was critical
 – QbD, Design Space concepts (many variables, interactions)
 – Clinical experience
 – Test methods
 – (FDA helped to define)

EXUBERA® (insulin human [rDNA origin]) Inhalation Powder

• Insulin naturally absorbed by the lungs without enhancers
• Dry powder insulin stable at room temperature
• Ideal particle size for systemic absorption via the lung
• Packaging system protects formulation from moisture
• Robust delivery device enables dosing as reliable as injections
Acknowledgements

Pfizer
Bob Bergeson
Rick Conley
Don Guzek
Brian Lewis
Joann Parker
Jackie Schumacher
Sonja Sekulic
Greg Sluggett
Frank Urbanski

Nektar
David Bennett
Scot Cheu
Steven Gray
John Howard
Richard Malcolmson
Phil Roberts
Sangita Seshadri
Cynthia Stevenson
Steve White*

*Current affiliation Epic Therapeutics, Inc.

... and many, many more

IPAC-RS Conference
November 2006