Challenges in the development of affordable orally inhaled products

IPAC-RS/UF Orlando Inhalation Conference March 18, 2014

Juliet Rebello

The information and views set out in this presentation are those of the presenter and do not necessarily reflect the official opinion of Cipla Ltd.
Overview

- Drivers and Barriers to developing affordable OIPs
- Challenges in choosing a Reference drug
- Study conduct challenges
- Key regulatory challenges
- Summary
Drivers and Barriers to developing affordable OIPs
Asthma Prevalence Versus Cost of Care in Developed and Emerging Markets

World Map of the Prevalence of Clinical Asthma

North America $18.2 bn*
EU $9.0 bn*
Rest of the world = $3.6 bn *

*asthma & COPD inhaled drugs

Proportion of population (%) *

Source:
GINA guidelines 2013
IMS Worldview

2.5-5.0
0-2.5
No standardised data available

10.1
7.6-10.0
5.1-7.5

[Map showing prevalence and cost of care]
The Changing Spectrum of COPD

3 million deaths every year
65% of all global COPD deaths occur in India and China

<table>
<thead>
<tr>
<th>Country</th>
<th>Avg number of Cigarettes smoked per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>2786</td>
</tr>
<tr>
<td>Japan</td>
<td>1841</td>
</tr>
<tr>
<td>China</td>
<td>1711</td>
</tr>
<tr>
<td>Turkey</td>
<td>1399</td>
</tr>
<tr>
<td>US</td>
<td>1028</td>
</tr>
<tr>
<td>Brazil</td>
<td>504</td>
</tr>
</tbody>
</table>

COPD estimated deaths in 2002

Source: International Classification of Diseases-10 codes: J40-J44, World Lung Foundation, American Cancer Society
Drivers And Barriers for the development of affordable inhalation products

Drivers

- Government and Payer demands
- Rising healthcare costs
- Increasing prevalence of respiratory disease in developed and emerging markets
- Demand for cost effective OIPs
- Greater availability of OIP BE Guidances

Barriers

- Freedom to operate
- Balance of development costs and profitability
- Unharmonized and changing regulatory requirements
- Requirements for evaluation in children/adolescents
- Complex delivery devices
- Commercialization
Challenges in Choosing a Reference Product
Choosing a reference listed drug (RLD) for global development

- Regulatory authorities often require studies to be conducted with their national RLDs and may even require that the studies be conducted at certified centres in their respective countries.

- Reference product can suddenly be withdrawn from the market.

- Selection of a “representative” reference batch can be a major problem especially when limited RLD batches are available in the market.

- Batch to batch variation is observed for the same RLD by country/within a market.
RLD differences within a market/across markets

Source: Cipla, Data on file 2013

mo = months from date of manufacture; FPM = Fine particle mass

- Reference Batch 1 (Country A) - Age of sample 3 Month
- Reference Batch 3 (Country A) - Age of sample 6 Month
- Reference Batch 5 (Country A) - Age of sample 8 Month
- Reference Batch 2 (Country B) - Age of sample 9 Month
- Reference Batch 4 (Country B) - Age of sample 17 Month
- Reference Batch 2 (Country C) - 12 month
- Reference Batch 1 (Country D) - 5 month
- Reference Batch 3 (Country D) - 8 month

Source: Cipla, Data on file 2013
Study Conduct Challenges
Study Conduct Challenges

• Phase I centers with respiratory expertise

• Complex, skill-based analytical methods and testing.

• Country restrictions in the inclusion of vulnerable populations (e.g., children, adolescents, women of child bearing potential).

• RLD blinding

• Estimating sample size/designing dose response studies when limited data is available

• Assuring proper device training
Lung deposition changes with Inspiratory flow rate

Inhalation rate SLOW (30 L min⁻¹) FAST (60 L min⁻¹)

FEV₁ 55% predicted

% Lung Deposition

0 4 8 12 16

Inhalation rate SLOW (30 L min⁻¹) FAST (60 L min⁻¹)
Inhaler Technique: Critical Errors

- Risk of critical error increased ($p<0.001$) with age, lower schooling, lack of instruction provided for the inhaler.

- Critical errors associated with ($p<0.001$) ↑ hospitalisation risk, emergency room visits, oral corticosteroid, poor disease control.
Challenges in conducting paediatric PK BE studies

- EMA generally requires *in vivo* studies in children.
- PK studies in children are prohibited in many countries for ethical reasons.
- PK profiling has to be truncated due to blood loss limitations.
- Centers with the required expertise are limited.
- Prohibitive sample size requirements due to:
 - Training limitations.
 - Need to evaluate asthma patients.
 - Variability associated with tidal versus deep breathing through a spacer.
EMA OIP guidelines – A standard for most markets?

EMA – OIP guidelines

- **In vitro**
 - Required

- **PK**
 - Required

- **Clinical**
 - Is it required?
Key Regulatory Challenges
Demonstrating equivalence for Stages with Low Mcg Quantities May not be Possible

Figure 1: Mass collected on each component of an Andersen 8-stage cascade impactor.

- Test
- Reference

Low amount of drug deposition
Within reference batches may not pass within 15% at stages with low deposition.
Healthy volunteers vs patients – the debate continues

Figure 1: Fate of inhaled drug in normal (A) and constrained (B) lung.

Aerolized drug

A

Normal

GI tract

lung tissue

B

Constrained

Aerolized drug

GI tract

lung tissue

Initial lung deposition

Absorption and mucociliary clearance

Figure 2: Lung retention, attained by scintigraphy of 99m Technetum-labelled BDP liposomes delivered via Aerotech II nebuliser to patients with asthma.
Do *in vitro* and PK bioequivalence assure comparable safety & efficacy?
PK/PD relationship - LABA

Formoterol DPI

<table>
<thead>
<tr>
<th>Dose (mcg)</th>
<th>12 mcg</th>
<th>24 mcg</th>
<th>48 mcg</th>
<th>96 mcg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (beats/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69 (10)</td>
<td>71 (10)</td>
<td>72 (11)</td>
<td>77 (11)</td>
</tr>
<tr>
<td>Serum potassium (mmol/L)</td>
<td>3.6 (0.2)</td>
<td>3.5 (0.2)</td>
<td>3.5 (0.2)</td>
<td>3.2 (0.3)</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>3.86 (0.63)</td>
<td>3.96 (0.65)</td>
<td>4.01 (0.72)</td>
<td>4.04 (0.70)</td>
</tr>
<tr>
<td>QTc (ms)</td>
<td>399.6 (25.1)</td>
<td>409.2 (20.7)</td>
<td>414.0 (24.8)</td>
<td>423.1 (24.3)</td>
</tr>
<tr>
<td>Blood glucose (mmol/L)</td>
<td>6.2 (1.0)</td>
<td>6.7 (1.3)</td>
<td>7.1 (1.1)</td>
<td>7.4 (0.9)</td>
</tr>
<tr>
<td>AUC0-t (pg.hr/ml)</td>
<td>95.39</td>
<td>170.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmax (pg/ml)</td>
<td>21.39</td>
<td>42.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PK studies are designed to assess a defined 20% difference b/w two products which is a very conservative margin to confirm equivalence.

PK/PD relationship – ICS

Table 1: Pharmacokinetic parameters (Geometric mean values) for fluticasone HFA pMDI

<table>
<thead>
<tr>
<th>Dose</th>
<th>Cmax (pg/ml)</th>
<th>AUC infinity (pg.hr/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 50 mcg</td>
<td>118.7</td>
<td>693.1</td>
</tr>
<tr>
<td>FP 125 mcg</td>
<td>237.7</td>
<td>1547.1</td>
</tr>
<tr>
<td>FP 250 mcg</td>
<td>506.8</td>
<td>3365.4</td>
</tr>
</tbody>
</table>

PK studies based on a conservative margin of 80-125% are adequate to assess the lung and systemic exposure between two inhaled formulations.

Figure 1: % Change from baseline in FEV1 predicted

Figure 2: Mean plasma cortisol suppression for single doses of budesonide 800 µg and FP 250 µg, 500 µg, 1000 µg, and following the last of 7 doses of FP 1000 µg twice daily. *P < 0.001.
AUC\(_{0-30\text{min}}\) is a good predictor of lung deposition

<table>
<thead>
<tr>
<th></th>
<th>Salmeterol (Test)* 200 mcg</th>
<th>Salmeterol (Reference) * 200 mcg</th>
<th>T/R ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>*AUC(_{0-30}) (with charcoal) hr. pg/ml</td>
<td>223</td>
<td>199</td>
<td>1.12</td>
</tr>
<tr>
<td>*AUC(_{0-30}) (without charcoal) hr. pg/ml</td>
<td>222</td>
<td>215</td>
<td>1.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Beclomethasone (17 BMP-Test)* 2000 mcg</th>
<th>Beclomethasone (17-BMP Reference)* 2000 mcg</th>
<th>T/R ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>**AUC(_{0-30}) (with charcoal) hr. pg/ml</td>
<td>1190</td>
<td>1250</td>
<td>0.95</td>
</tr>
<tr>
<td>**AUC(_{0-30}) (without charcoal) hr. pg/ml</td>
<td>933</td>
<td>1026</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Pharmacokinetic evaluations comparing AUC\(_{0-30\text{ min}}\) (and C\(_{\text{max}}\)) are important in understanding bioequivalence of inhaled drugs, and these estimates can provide reliable estimates of lung deposition

Source: *ERS 2010; **Inhalation Asia 2013

*Geometric mean values
Summary

• Equivalence to be evaluated using the most sensitive methodology i.e. PK studies

• Population most sensitive to detect differences to be considered

Harmonization of BE guidances for OIP across countries (sharing best practices) and improve global availability and access to affordable OIPs

• Leveragability of data and BE programs across countries

• Engage Industry-Regulators communication to build best practices
Acknowledgements

• Dr. Paul Dorinsky and the Respiratory Clinical Team
• Mrs. Geena Malhotra and the R&D Team
• Dr. Purandare and the Regulatory Team
Thank You