

Switching to sustainable materials for our current devices

> Ed Jackson Nov 2022

How do we make our current devices more sustainable

Initial Questions and Points to Consider

- How do we make this change
 - What does making the current device more sustainable actually mean?
 - How complex will it be to change to sustainable materials?
 - What sustainable material options are available currently or in the future?
 - What is the benefit in making the device more sustainable?
 - Do we change all components or just some of them?
 - Is it best to stay with current material suppliers or source elsewhere?
 - Consider security of supply of the material if you switch?
 - How do you get sustainability certification e.g. ISCC or REDcert?
 - Do you gain certification for the whole supply chain, from material supplier to moulder to product license holder?

3

How do we make our current devices more sustainable

Initial Questions and Points to Consider

- Technical Points to Consider
 - Understand how material suppliers are moving to sustainable grades e.g. Mass balance, recycling.
 - Assess what sustainable materials are available to make the switch for your device?
 - What can your current material supplier offer?
 - Are there other options from different suppliers?
 - Work with your suppliers to confirm if it is the same material. If so, this could reduce the work required?
 - Is the new material giving the same manufacturing process and technical performance?

How do we make our current devices more sustainable

Initial Questions and Points to Consider

- Technical Points to Consider
 - How can the material supplier support you with the switch with respect to technical and regulatory aspects?
 - What testing have they done?
 - What is their certification?
 - Availability of equivalence data and bio compatibility to support your assessment ?
 - Regulatory impact for the material is this the same material and DMF as the standard grade?
 - Work with your moulder or CDMO to agree level of work required to implement this change.
 - Is full qualification really required?

How do we make our current devices more sustainable

Initial Questions and Points to Consider

- Cost and Time Implication
 - How much will it cost? Who will pay for this?
 - How long will it take?
- Regulatory Impact
 - How is the material supplier documenting this change from a Reg perspective?
 - How will this change impact any device requalification and regulatory impact to approve the change?
 - Is there any clear guidance on how to support such a change?

How do we make our current devices and future more sustainable

- Thinking ahead Our second sustainability roundtable discussion in early 2023.
 - How do we design next generation devices to be more sustainable?
 - Can we reuse a device?
 - Can we recycle?

Mass Balance

• Currently seems to be the main strategy among material suppliers certainly for the medical industry.

https://www.iscc-system.org/about/circular-economy/mass-balance-approach/

Next Roundtable Discussion in 2023

- Both DuPont and Celanese kindly supplied the following slides overviewing their strategy to moving to sustainable grade.
- Both companies will join us for our next discussion in early 2023 to provide more details and answer your questions.

Example of Sustainability Switch -DuPont Delrin

Example of Sustainability Switch - DuPont Delrin®

Delrin® Renewable Attributed – Breakthrough of Sustainability

Renewable, high crystalline acetal resin produced from biomass waste, showing an excellent eco-profile among all engineering polymers. 100% of the base polymer is renewable, based on mass balance

Example of Sustainability Switch - DuPont Delrin ®

From biomass waste to Delrin[®] Renewable Attributed

Example of Sustainability Switch - DuPont Delrin®

Delrin® RASC655 Renewable Attributed

		Delrin [®] SC655	Delrin [®] RASC655 Renewable Attributed
Global warming potential	%	100	26
Abiotic Depletion Potential	%	100	54
Melt mass-flow rate	g/10min	15	
Molding shrinkage (parallel / normal)	%	2.0 / 1.9	
Density	kg/m ³	1420	
Melt temperature	°C	178	
Tensile modulus	MPa	3100	
Yield stress	MPa	71	
Yield strain	%	17	
Nominal strain at break	%	30	
Charpy notched impact strength (23°C)	kJ/m ²	9	
Charpy notched impact strength (-30°C)	kJ/m ²	8	3

* Manufacturing according to GMP principles, Food contact statements (EU/FDA), Testing against selected parts USP Class VI, Testing against relevant parts ISO

10993, extended change management process

Kindeva DRUG DELIVERY

Example of Sustainability Switch -Celanese PBT

Example of Sustainability Switch – Celanese PBT

Example of Sustainability Switch – Celanese PBT

We can feed the bio 1,4 Butanediol and mix directly into our standard manufacturing process. This allows Celanese to offer our customers Celanex® PBT ECO-B as the sustainable version of most of our Celanex® PBT grades.

External

Celanese Corporation

Example of Sustainability Switch – Celanese PBT

Discussion

Thank You

