

# Collection and Detection Strategies for Inhaled Biologics

Philip Kuehl, PhD Senior Scientist



IPAC-RS Workshop: Inhaled Biologics: Preparing for a Future Beyond Small Molecules

September 4-5, 2024



# **Collection and Detection Strategies**

- Goal is to link between the preclinical toxicology presentation from Emily Resseguie and the analysis / quantification methods that Chris will present
- Give an overview of some of the things that have been evaluated
- Present data on some examples that span the range of inhaled biologic molecules

# **Classical Aerosol Concentration/Dose**

- Focus on API collected
  - Extract filter in suitable solvent
  - Analysis is focused on amount of API / excipients collected
  - Often utilize HPLC/UPLC-UV analysis of a filter media
  - Fit for purpose is based on chemical stability and recovery of target compounds from the filter







# **Classical Particle Size Distribution**

- Typically focused on the API and sometimes includes mass
- Typically utilize inertial impaction, sometimes consider light scattering or other devices







# How does this change for a biologic?

- Biologics require
  - Aerosol concentration / dose
  - Particle size
  - Activity
  - Integrity
  - Encapsulation
- Often the assay(s) often change
  - Listen to Chris' talk!



## **Aerosol Characterization**

- Standard inhalation exposure system
- Highlight collection and analysis for each endpoint
- Each of these parallels collection for general aerosol characterization



# Aerosol Concentration/Dose

- Inhaled biologics may require different collection methods based ( extraction / assay / artifacts that impact analysis
- Collection methods require modification/adaption to ensure no artifacts of collection in final results
- Things to consider:
  - Liquid collection impinger, biosampler, etc.
  - Condensation Cipolla et. al. 2015 or similar methods
  - Others don't be afraid to try something new!







## **Aerosol Concentration**

- Traditional method to collect at breathing zone
- Aerosol on filter



# **Aerosol Concentration**

- Similar collection at the breathing zone
- Collection via a liquid collection system



# **Particle Size**

- Similar collection at the breathing zone
- Collect with appropriate device (impactor)
  - Assay by chemical analysis and/or differential mass



# Integrity/Activity/Encapulation

- Don't be afraid to try something!
  - This was a real struggle on initial programs
- Condensate in the generation line for aerosol entrainment





## **Collection Approach**



# Example Novel AAV with mRNA

- Vibrating mesh nebulizer
- Mass aerosol concentration via filter sample
  - Total aerosol concentration
- Genomic titers via glass frit impingers
   with ddPCR analysis
  - ddPCR and PCR analysis
- Integrity, aggregation and infectivity via condensate
  - Cell based activity
  - Light scattering for aggregation



## Example LNP with mRNA

- Vibrating mesh nebulizer
- Standard filters collected for mass aerosol concentration
- Novel filters collected for analysis of mRNA and lipid analysis
- Condensate collected in generation line for activity and encapsulation efficiency



\* Nebulizers are in same horizontal plane and are parallel to delivery line.

## **Example Novel Viral Vector**

- Vibrating mesh nebulizer
- Standard filters collected for mass aerosol concentration
- Biosampler collected in exhaust for PCR analysis of viral genomes



# Example Oligo

- Compressed air jet nebulizer
- Mass aerosol concentration via filter sample
- Oligo aerosol concentration from filter
   with HPLC-UV assay



# **FDA Expectations**

- Novel AAV based payload for CFTR
- Vibrating mesh nebulizer
- Mass aerosol concentration via filter sample
- Genomic titers via glass frit impingers with ddPCR analysis
- Integrity, aggregation and infectivity via condensate

- Validated dose formulation analysis method ddPCR
- Validated concentration collection and quantification methods – PCR, SEC-HPLC, ddPCR
- Validated particle size methods
- Scientifically sound integrity, aggregation and infectivity assays

# Inhaled Biologics – Opportunities

- The field of inhalation biologics will continue to expand:
  - Compound classes
  - Disease indications
  - Patient populations
- Define the best science
  - When possible publish/present the success stories and the 'lessons learned'
- Adapt and evolve methods, guidance documents and instrumentation to support new API's and formulations



### **Detection Schemes for Inhaled Biologics**

#### Christopher J. Gruenloh, Ph.D.

Research Fellow September 5, 2024

The world leader in serving science



#### **Starting point**

Pickup where Philip left off...focus on detection schemes for aerosol performance testing

Questions

- What is the "active" and how is it formulated?
- Is it a molecule, a particle, a living cell or some constituent thereof?
- What detection schemes can be used?
- What detection schemes should be used?

### From sample to results in the GMP world





| Sample Handling      | 2 parts: a) analyst safety and b) how not to change what you're trying to measure $\rightarrow$ sometimes competing factors |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| DDU/APSD Collections | Does the device or test apparatus impact what is being measured?                                                            |
| Recovery             | Can you get the sample out of the DUSA, filter or sample cup/plate?                                                         |
| Detection            | What is the most appropriate measure?<br>Content (of active or delivery system) or activity?                                |

**ThermoFisher** SCIENTIFIC

### **Perceived Analytical Complexity**

Perceived Analytical Complexity

- synthetic peptides and oligonucleotides
- antibodies and fragments (e.g., Fabs)
- mRNA (often encapsulated in LNPs)
- viruses: bacteriophages, viral vectors
- cells (e.g., stem) and cellular mixtures



Thermo

# Attributes of an ideal detection method for DDU and APSD

#### **Analytical Merits**

- Specificity
- Dynamic range (esp. for APSD, ~3 orders of magnitude)
- Precision
- □ Fast / High Throughput \*

### Low Cost per Sample

- Instrumentation
- Reference Standards (if required)
- Reagents/kits
- Effort to develop/validate method
- Effort for routine sample preparation/analysis

## High throughput detection: a critical attribute

#### Assume nebulized delivery of 8 mL sample

#### DDU

- 10 collections
- Device + 4-5 filters / collection
- 10 values to report but from 50-60 samples

#### **APSD** by NGI

- □ 5-6 replicate collections
- Device + IP + 7 stages + MOC filter
- □ 50-60 samples to analyze
- \* HPLC typically uses 1 injection/sample + external standards. For other detection schemes (e.g., ELISA, PCR and plaque assays), need to consider the impact of additional 'instrument replicates' per sample

# **Physical methods**

## **Physical Method: UV Absorption & Optical Density**

A =  $\varepsilon$ bc Beer's LawProtein Concentration : A280 measurements often used for pure samplesAAVs Cp and Vg Titers \* : Optical DensityA260/280 Ratios $\lambda$ max (DNA) = 260 nm /  $\lambda$ max (capsid protein) = 280 nmFull capsid: ~1.4Empty capsid: ~0.6

#### Merits

- (+) fast, does not require ref standard, and uses common lab equipment
- (-) Need highly pure samples; potential interference from protein/nucleic acid imps, buffers, excipients and other contaminants from DUSA and NGI
- (-) indirect measure of genome; requires correlation via another technique (e.g. AUC) due to interference from DNA at 280 nm with titer error increasing with % light capsid
- (-) does not resolve partial genome species (insensitive to capsid content)

<sup>\*</sup> Jürg M Summer, et al., Quantitation of Adeno-Associated Virus Particles and Empty Capsids by Optical Density Measurement, MOLECULAR THERAPY Vol. 7, No. 1, January 2003, 122-28

#### **Thermo Fisher** S C I E N T I F I C

## Physical Method: UV Absorption & Optical Density

Precision

Range

Specificity

A =  $\varepsilon$ bc Beer's Law Protein Concentration : *A* AAVs Cp and Vg Titers \*  $\lambda$ max (DNA) = 260 n

#### Merits

- (+) fast, does not require r
- (-) Need highly pure samp and other contaminants free
- (-) indirect measure of ger from DNA at 280 nm with
- (-) does not resolve partial

#### used for pure samples

|          | A260/280 Ratios |      |  |
|----------|-----------------|------|--|
| = 280 nm | Full capsid:    | ~1.4 |  |
|          | Empty capsid:   | ~0.6 |  |

imon lab equipment

from protein/nucleic acid imps, buffers, excipients

via another technique (e.g. AUC) due to interference 6 light capsid

#### Not enough specificity to be used as a detection scheme for DDU and APSD!

\* Jürg M Summer, et al., Quantitation of Adeno-Associated Virus Particles and Empty Capsids by Optical Density Measurement, MOLECULAR THERAPY Vol. 7, No. 1, January 2003, 122-28

Throughput

Cost

## **Physical method: SEC-UV**

- Separation based on hydrodynamic volume
  - largest particles excluded from pores and hence elute first
  - smallest particles spend time partitioning to and from pores and so elute later
  - Specificity achieved depends on size difference
- UV Detection: 215 nm (std curve) and/or OD A260/280



#### **Thermo Fisher**

#### **Merits**

(+) separation increases specificity vs UV Abs alone (+) fragments + multimers (-) requires external standardization (-) limited to particles smaller than ~100 nm (-) insensitive to payload (+) RSDs < 3%

# Go-to technique for DDU/APSD Detection if it is applicable to your Biologic (e.g, peptides, oligos, proteins, AAVs, LNPs)

## Physical method: SEC-(UV-RI)-MALS

| Specificity | Range | Precision | Throughput | Cost |
|-------------|-------|-----------|------------|------|
|             |       |           |            |      |
|             |       |           |            |      |

#### MALS – multi-angle light scattering

aggregation, psd, capsid content, capsid molar mass, genome molar mass, Cp and Vg titer \*

- UV (280 nm) + MALS + RI → molar mass, size, number of light-scattering species
- (-) sensitivity of RI method limits sensitivity/range
- (-) complex methodology requiring specialized software to derive results
- (+) absolute method  $\rightarrow$  no std curve required

#### Opportunity to assess use if SEC-UV does not provide the required information. Not as suitable for routine QC use given limited range and software derived results.

<sup>\*</sup> McIntosh NL, et. al., Comprehensive characterization and quantification of adeno associated vectors by size exclusion chromatography and multi angle light scattering. Sci Rep 11, 3012 (2021). https://doi.org/10.1038/s41598-021-82599-1

# **Molecular methods**

30

## **Molecular: ELISA**



#### "Sandwich" Assay for Proteins and Protein-containing biologics Merits

- Key: linkage of sample to the plate that allows reagents to be washed away
- Capture antibody is pre-coated on plate in excess
- Stepwise addition of analytical sample and secondary antibody
- Use of blocking and wash steps
- Detection via colorimetric,
   fluorescence, chemiluminescence



(+) highly specific for capsid;
requires interaction with 2
epitopes on capsid
(+) highly sensitive
(-) 10-20% RSD
(-) measurement does not reflect
contents of capsid

Opportunity to assess use for protein and proteincontaining biologics

https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa.html

### Molecular: qPCR



#### RNA (via cDNA) or DNA payload (viral genomes, Vg/mL)

- Copy / "Amplify" targeted genetic material 10<sup>3</sup> 10<sup>6</sup> x via thermal cycling with fluorescence detection
- Amplicons double every cycle assuming 100% efficiency
- Cycle Threshold or C<sub>t</sub> used with standard curve
- (+) direct detection of viral genome
- (-) 5-15 % RSD
- (-) genome titer does not necessarily relate to activity



Opportunity to assess use for nucleic acid-based therapeutics But costly and will need to address plate replicates and cross plate variability

https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf?cid=rtpcrhandbook-rtpcr



# Activity

33

## Activity: plaque assay



# Example: bacteriophage targeting pseudomonas aeruginosa infection

- Incubate *P. aeruginosa* cells on a series of plates to achieve monolayer coverage
- Dilute phage of known concentration (10<sup>0</sup>, 10<sup>-1</sup>, 10<sup>-2</sup>...10<sup>-10</sup>)
- Apply diluted phage to no fewer than 3 replicate plates per each of the 4-5 dilutions required to cover the potential sample range
- Remove non-attached phage, apply nutrient medium and incubate
- Count the number of plaques per plate and calculate PFU/mL based on dilutions

(+) activity for drug delivery system

(+) valuable in assessing handling practices as well as impact to formulation and/or device type changes

- (-) not all viruses cause plaques
- (-) run time: 4-5 days
- (-) not amenable to running 50 samples in parallel
- (-) labor intensive: plating, dilutions, counting of plaques
- (-) 30% RSD repeatability/intermediate precision

# Not a suitable method for DDU / APSD detection

https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf?cid=rtpcrhandbook-rtpcr

Merits

#### **Conclusions**

- Diversity of inhaled biologics continues to increase
- Need to define the "Active"  $\rightarrow$  molecule, delivery system or payload
- Discussed a number of physical, molecular and activity-based methods
- Select methods for DDU and APSD detection that provide best precision while balancing needs for specificity, accuracy, throughput and cost

# **Thank You**

**ThermoFisher** SCIENTIFIC

# and

# Questions