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Motivation

> Increasing antimicrobial resistance to traditional antibiotics calls for
renewed focus on prevention via vaccines

> The threat of global pandemics requires effective countermeasures that can
be rapidly developed and deployed globally

> Substantial infectious disease burden in developing countries needs
effective interventions suitable for resource-poor settings



Burden of Disease

Disability Adjusted Life Years per 100000 S )

The greatest burden of disease is in low-income countries, esp. Africa.
Interventions need to be suitable for global use.




Low income countries

- 1 Lower respiratory infect

2 Malaria

3 Diarrheal diseases

4 Neonatal encephalopathy
5 Neonatal preterm birth
|6 Drug-susceptible TB

_? HIV/AIDS other
|8 Other neonatal

9 Ischemic heart disease
|10 Neonatal sepsis
111 Protein-energy malnutrition
12 Meningitis

13 Intracerebral hem

14 Measles

{15 Drug-susceptible HIV/AIDS - TB

Burden of Disease: 15 Leading Causes by Income level

High income countries

1 Ischemic heart disease
2 Low back pain

3 Lung cancer

4 Diabetes type 2

5 COPD

6 Falls

7 Alzheimer's disease

8 Ischemic stroke

9 Other musculoskeletal
10 Colorectal cancer

11 Migraine

12 Major depression

13 Age-related hearing loss
14 Opioid use disorders
15 Anxiety disorders

Communicable, maternal,
neonatal, and nutritional
diseases

Non-communicable diseases

Injuries

Causes of disease burden are radically different in poor countries.
Infectious diseases, and neonatal conditions dominate.
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Goals

> Develop temperature stable vaccines using a platform approach to simplify
the supply chain, eliminating cold chain distribution to enable global transport,

storage, and delivery.
> Use rapidly scalable manufacturing processes to produce temperature stable
vaccines with low operational costs, for more efficient responses to emerging

health threats
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Goals

> Prevent infection and transmission of respiratory diseases by targeting
the site of natural infection

> Enable needle-free delivery of vaccines to promote uptake and ease of use in
resource-poor settings




Vaccine Systems
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GLA molecules

Adjuvant: Squalene
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(Glucopyranosyl lipid adjuvant)
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Spray Dried Vaccine Candidates
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TUBERCULOSIS
ID93 + GLA-SE

AAHTI’s recombinant protein ID93 and
its GLA-SE adjuvant formulation is in
preclinical studies in NHPs
administered by inhalation and nasal
delivery.

CoVviID-19
S2P Trimer + GLA-3M-052-LS

AAHI has established proof-of-concept of
a spray dried presentation of its liposomal

formulation of GLA and 3M-052,

combined with an S2P trimer developed

by University of Rio de Janeiro.

INFLUENZA
saRNA + NLC

AAHI has spray-dried an H5N1 influenza
saRNA with its nanostructured lipid
carrier delivery vehicle.



Design Targets

Optional Shell Former:
Leucine or trileucine

Glass Stabilizer: * Physical and biochemical stability (25°C)
Trehalose * Minimal processing loss
* Flexible dose
* Particle size for nasal delivery and animal studies
« Compatible with inexpensive, single-use devices
* Straightforward regulatory strategy
* Low development risk and clear path to scale-up

Vaccine Nanostructures
(Emulsion droplets, liposomes,
carrier particles, virus)
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In-silico Design Accelerates Product Development

Material properties
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Feed concentration
Evaporation rate

Feed rate and concentration
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Morphology: TB Vaccine

Small particle size for mouse studies.
With added trileucine shell.

Without shell former
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Morphology GLA-3M-052 COVID Vaccine

With 1% trileucine Without shell former (trehalose only)

3.0kV 8.0mm x8.00k SE(M)

Rugose particles improve dispersibility
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Morphology saRNA Influenza Vaccine

Interior structure Surface structure
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With 20% leucine
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Physical Stability

No morphological changes
No solid phase changes
(verified by Raman spectroscopy)

GLA-SE TB Vaccine

GLA-3M-052 COVID Vaccine
After 10 months storage at 40°C
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500 nm Mag= 20.00KX EHT= 3.00kV Date: 8 Nov 2021 \FianOFAB
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After 2 years storage at 40°C
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Adjuvant Stability - GLA

GLA-3M-052 COVID Vaccine

GLA-SE TB Vaccine

GLA Concentration
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Adjuvant Stability — 3M-052

Concentration ug/mL
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GLA-3M-052 COVID Vaccine

3M052 Concentration
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Stable for 10 months at 40°C




Antigen Stability

GLA-SE TB Vaccine GLA-3M-052 COVID Vaccine
COVID Spike Protein Antigen Content
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Dry Powder Vaccine Efficacy

GLA-SE TB Vaccine
Lung Bacterial Burden

Mouse
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Comparable efficacy of

pulmonary and IM delivery.
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saRNA Influenza Vaccine
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NLC particle size and
immunogenicity retained after
spray drying and reconstitution.



Aerosol Performance

GLA-SE TB Vaccine
Surrogate test in passive DPI

100 | _ﬁiﬁf ____________________________________________ s < 50

— R S S sl e i o
()] - - ":::::::;:;mﬁ?:::::33::322:::::::::::: ------------------------ 0
0 0 40
Q 80} 2 °
@) < B Trehalose-trileucine, 5°C
X i D 30 N o
; g ] -8~ Trehalose-trileucine, 25°C
8 60 |- g 20~ 4 Trehalose-trileucine, 40°C
O i S —— Trehalose-trileucine, 50°C
©
2 40 - = 10-
E IS

) Q
LIJ 20 | 100 L/ . h 0 | ) | I B | I L L L | I | | | | | | I | ) | I B | I LI L | | I

min 0 5 10 15 20 25
Time (months)
o i | L1 L1 L1 L1 I L1
O 1 2 3 4 5 6 7 8 9 10 11 12 Alberta
Time (months) Idealized
Throat

© AAHI 2024



Test Procedures for Dry Powder Nasal Devices

-
e Repeatable automated actuation Actuator

* Deposition testing in idealized nasal 5

Aptar
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Mlxmg LE #
Inlet : w

geometry

UDS active nasal delivery device / Commercial version
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Deposition Pattern

GLA-SE TB Vaccine for non-human primate study
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Deposition Pattern

GLA-3M-052 COVID Vaccine with intermediate particle size
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Conclusions

The dry powder platform based on spray dried trehalose particles with an optional protective shell is compatible with a variety of
adjuvanted vaccine systems and vaccine types

« The platform provides negligible manufacturing loss, outstanding thermostability, and robustness

» Particle size and deposition patterns can be adjusted for different targets in human and animal models

» Several inexpensive single-use delivery devices exist that enable needle free delivery

« Spray drying can be scaled up to manufacturing rates necessary for pandemic response

» Developmentis aided by predictive models and can make use of existing GMP infrastructure from respiratory therapeutigs

+ Ready to move from technology development to product development . ¢ ® O °
| o O P
‘e 99O
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